Nonsolvable groups with no prime dividing three character degrees
نویسندگان
چکیده
منابع مشابه
Nonsolvable Groups with No Prime Dividing Three Character Degrees
Throughout this note, G will be a finite group, Irr(G) will be the set of irreducible characters of G, and cd(G) will be the set of character degrees of G. We consider groups where no prime divides at least three degrees in cd(G). Benjamin studied this question for solvable groups in [1]. She proved that solvable groups with this property satisfy |cd(G)| 6 6. She also presented examples to show...
متن کاملFinite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
متن کاملNonsolvable Groups Satisfying the One-Prime Hypothesis
Throughout this paper, G is a finite group and Irr(G) is the set of irreducible characters of G. We are particularly interested in the values these characters take on the identity of G. If χ ∈ Irr(G), then χ(1) is the degree of χ. The set of all degrees for G is written cd(G) = {χ(1) |χ ∈ Irr(G)}. In recent years, there has been much interest in finding connections between the structure of a fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2015
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2015.02.032